The novel melphalan prodrug J1 inhibits neuroblastoma growth in vitro and in vivo.

نویسندگان

  • Malin Wickström
  • John Inge Johnsen
  • Frida Ponthan
  • Lova Segerström
  • Baldur Sveinbjörnsson
  • Magnus Lindskog
  • Henrik Lövborg
  • Kristina Viktorsson
  • Rolf Lewensohn
  • Per Kogner
  • Rolf Larsson
  • Joachim Gullbo
چکیده

Neuroblastoma is the most common extracranial solid tumor of childhood. The activity of J1 (l-melphalanyl-p-l-fluorophenylalanine ethyl ester), an enzymatically activated melphalan prodrug, was evaluated in neuroblastoma models in vitro and in vivo. Seven neuroblastoma cell lines with various levels of drug resistance were screened for cytotoxicity of J1 alone or in combination with standard cytotoxic drugs, using a fluorometric cytotoxicity assay. J1 displayed high cytotoxic activity in vitro against all neuroblastoma cell lines, with IC(50) values in the submicromolar range, significantly more potent than melphalan. The cytotoxicity of J1, but not melphalan, could be significantly inhibited by the aminopeptidase inhibitor bestatin. J1 induced caspase-3 cleavage and apoptotic morphology, had additive effects in combination with doxorubicin, cyclophosphamide, carboplatin, and vincristine, and synergistically killed otherwise drug-resistant cells when combined with etoposide. Athymic rats and mice carrying neuroblastoma xenografts [SH-SY5Y, SK-N-BE(2)] were treated with equimolar doses of melphalan, J1, or no drug, and effects on tumor growth and tissue morphology were analyzed. Tumor growth in vivo was significantly inhibited by J1 compared with untreated controls. Compared with melphalan, J1 more effectively inhibited the growth of mice with SH-SY5Y xenografts, was associated with higher caspase-3 activation, fewer proliferating tumor cells, and significantly decreased mean vascular density. In conclusion, the melphalan prodrug J1 is highly active in models of neuroblastoma in vitro and in vivo, encouraging further clinical development in this patient group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo

Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in vitro and ex vivo. Ellman’s colorimetric method was used for...

متن کامل

In vivo activity in a catalytic antibody-prodrug system: Antibody catalyzed etoposide prodrug activation for selective chemotherapy.

Effective chemotherapy remains a key issue for successful cancer treatment in general and neuroblastoma in particular. Here we report a chemotherapeutic strategy based on catalytic antibody-mediated prodrug activation. To study this approach in an animal model of neuroblastoma, we have synthesized prodrugs of etoposide, a drug widely used to treat this cancer in humans. The prodrug incorporates...

متن کامل

Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo

Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in vitro and ex vivo. Ellman’s colorimetric method was used for...

متن کامل

Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl).

In multiple myeloma (MM) protein kinase C (PKC) signaling pathways have been implicated in cell proliferation, survival, and migration. Here we investigated the novel, orally available PKC-inhibitor enzastaurin for its anti-MM activity. Enzastaurin specifically inhibits phorbol ester-induced activation of PKC isoforms, as well as phosphorylation of downstream signaling molecules MARCKS and PKCm...

متن کامل

miR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer

Objective(s): Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. Materials and Methods:We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2007